Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters.

نویسندگان

  • Claudia Gomes da Rocha
  • P Andre Clayborne
  • Pekka Koskinen
  • Hannu Häkkinen
چکیده

We have carried out first-principles calculations to investigate how the electronic and optical features of graphene nanoribbons are affected by the presence of atomic clusters. Aluminum clusters of different sizes and stabilized by organic ligands were deposited on graphene nanoribbons from which the energetic features of the adsorption plus electronic structure were treated within density-functional theory. Our results point out that, depending on their size and structure shape, the clusters perturb distinctively the electronic properties of the ribbons. We suggest that such selective response can be measured through optical means revealing that graphene nanoribbons can work as an efficient characterization medium of atomic clusters. In addition, we demonstrate that atomic clusters can fine-tune the electronic and spin-polarized states of graphene ribbons from which novel spin-filter devices could be designed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Theoretical study of interaction between aspirine drug and Al-soped graphene nanostructure toward designing of suitable nanocarrier for drug delivery

Background: In recent years, the unique physical and chemical properties of carbon nanostructures has led to many advancements in various fields, including chemistry and pharmaceuticals. Graphene is one of the carbon nanostructures which have attracted significant attention from researchers in adsorption and release of various drugs. Due to the high surface area of graphene, it can be used as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2014